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Abstract

In the present work the problem of optimizing the geometry of tubes with internal asymmetrical _ns in order to
enhance the heat transfer under laminar ~ow conditions is studied[ The velocity and temperature distributions on the
_nned tube cross!section are determined with the help of a _nite element model and a global heat transfer coe.cient^
an equivalent Nusselt number and a compared e}ectiveness are calculated[ Polynomial pro_les are assigned to the two
lateral _n surfaces and the geometry is optimized in order to make the heat transferred per unit of tube length or surface
as high as possible for a given weight and for a given hydraulic resistance[ The optimum asymmetrical _ns\ obtained by
means of a genetic algorithm\ are _nally shown for di}erent situations and their performances are compared with those
of optimum symmetrical _ns[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a height of the _ns ðmŁ
cp speci_c heat capacity of the coolant ðJ kg−0 K−0Ł
Ec compared e}ectiveness
f0\ f1 angular coordinate values on the _n pro_les as a
function of r ðradŁ
Fi form factors
h global heat transfer coe.cient ðW m1 K−0Ł
kc thermal conductivity of the coolant ðW m−0 K−0Ł
M scale factor depending on the hydraulic resistance
n0\ n1 _n pro_le polynomial orders
Nue equivalent Nusselt number
p generalized pressure ðN m−1Ł
qý heat ~ux per unit of surface ðW m−1Ł
r radial coordinate ðmŁ
ri radial coordinate of the ith knot ðmŁ
R internal radius ðmŁ
s un_nned wall thickness ðmŁ
ti temperature of the ith knot ðKŁ
Tb bulk temperature of the coolant ðKŁ
Tc temperature of the coolant ðKŁ
Tf temperature of the _nned tube ðKŁ

�Corresponding author] D[I[E[N[C[A[\ via Zannoni 34:1\
39023 Bologna\ Italy[

Tmax maximum temperature on the external surface ðKŁ
u coolant velocity ðms−0Ł
ui coolant velocity of the ith knot ðms−0Ł
wt total coolant volume ~ow rate ðm2 s−0Ł
z longitudinal coordinate ðmŁ[

Greek symbols
a normalized height of the _ns
b half!angle between the middle lines of two _ns ðradŁ
g ratio between _nned tube and coolant thermal con!
ductivity
h normalized radial coordinate
u angular coordinate ðradŁ
ui angular coordinate of the ith knot ðradŁ
m dynamic viscosity ðkg m−0 s−0Ł
j normalized area of the _n cross section
r coolant density ðkg m−2Ł
s normalized un_nned wall thickness
s¹ normalized average wall thickness
f0\ f1 angular coordinate on the _n pro_les as a func!
tion of h ðradŁ
f0i\ f1i _n pro_le describing parameters ðradŁ
c0i\ c1i polynomial coe.cients
v0\ v1 angular coordinate values in V0 and V1 as a
function of r ðradŁ
V0\ V1 contours of the studied domain[
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0[ Introduction

Finned surfaces are commonly used in many engin!
eering sectors to enhance heat transfer[ Many researchers
have studied the problem of optimizing the shape of the
_nned surfaces in order to increase heat transfer e}ec!
tiveness and reduce the dimensions and the weight of
thermal dissipator systems[ The need to reduce the vol!
ume and the weight of heat dissipators\ in fact\ has
become even more important in many engineering _elds[
In the electronic industry ð0Ð1Ł or in the compact heat
exchanger sector ð2Ł for example\ even higher heat ~uxes
have to be removed from miniaturized components
through very small heat transfer surfaces[

Since 0819 a variety of _n pro_les have been studied in
order to maximise the heat ~ux removed through _nned
surfaces ð3Ð8Ł[ Parabolic\ triangular\ undulate pro_les
have been proposed for longitudinal _ns[ Some of them
have been demonstrated as having a noticeably improved
e}ectiveness under particular conditions ð09Ð02Ł\ but for
many situations a de_nitive solution to the problem of
optimizing the pro_le of the _n has not yet been found[

The heat transfer e}ectiveness of _nned surfaces
depends on di}erent factors concerning _n conductance\
the extension of the heat transfer surface between the
solid and the ~uid\ and the local heat transfer coe.cient[
Each of these factors often depends on the others[ For a
given value of the thermal conductivity of the _n material\
in order to enhance the conductance of the _ns\ it is
necessary to increase the thickness and reduce the height[
To increase the heat transfer surface\ the extension of the
_n must be augmented and\ if the material or weight
which is available for the _n is constrained\ the _n thick!
ness must be reduced[ Moreover\ the local heat transfer
coe.cient depends on the shape and the spacing of the
_ns in di}erent ways[

In a previous work ð03Ł we studied the problem of
optimizing the lateral pro_le of longitudinal symmetrical
_ns located in cylindrical tubes and cooled by a ~uid in
laminar ~ow[ We demonstrated that\ under such
conditions\ the local heat transfer coe.cient on the sur!
face of the _n and of the tube wall is very sensitive to the
~uidodynamic conditions determined by the _n pro_le[
As a consequence\ the improvements in the internally
_nned tube heat transfer e}ectiveness\ which can be
obtained by optimizing the _n pro_le\ depend much more
on the increase of the local heat transfer coe.cient than
on the _n surface extension or conductance enhancement[

Most of the studies performed on the optimization
of the _n shape consider longitudinal _ns which have
symmetrical lateral pro_les[ This assumption simpli_es
the treatment of the problem with regard to the boundary
conditions assignment and\ if the solution is obtained in
a numerical way\ to the extension of the studied domain[
Nevertheless\ the adoption of symmetrical _ns does not
represent the best solution in terms of heat transfer e}ec!

tiveness\ mainly when the _n volume is constrained and
the local heat transfer coe.cient is very sensitive to the
pro_les of the _ns[ Asymmetrical _ns\ in fact\ provide a
more extended heat transfer surface for a given volume
and allow more appropriate shapes of the channels
between the _ns to be obtained[ In the present work\ we
then study the problem of optimizing the lateral pro_les
of asymmetrical _ns located in cylindrical tubes and
cooled by a ~uid in laminar ~ow\ in order to maximize
the heat dissipated per unit of tube length or surface[ As
observed in the previous work ð03Ł\ the case of laminar
~ow is interesting when the coolant velocity must be
reduced\ for example\ in order to lower the noisiness of
the devices\ to avoid excessive power dissipations or to
prevent miniaturized structures from large pressure
gradients[

1[ The mathematical model

In a cylindrical coordinate system let us consider an
internally _nned tube\ whose axis is coincident with the
z axis[ All _ns are asymmetrical and identical "Fig[ 0a#[ A
heat ~ux qý is uniformly imposed on the external surface[
Moreover\ a coolant passes through the tube in laminar
~ow[

Since all the _ns are identical\ the heat transfer per!
formances of the system can be determined by studying
a portion of it delimited by the lines V0 and V1 which
pass through the middle points of two adjacent _ns as
shown in Fig[ 0b[ Let R be the internal radius of the
un_nned tube wall\ s the thickness\ a the _n height in the
radial direction and 1b the angle between V0 and V1[
Moreover\ let the angular coordinate u be equal to f0"r#
and to 1b−f1"r# on the two lateral _n pro_les\ f0"r# and
f1"r# being arbitrary functions of the radial coordinate r[

In steady state\ if natural convection is negligible in
regard to the forced one\ ~uid properties are uniform\
viscous dissipations within the ~uid are negligible and the
velocity pro_le is completely developed\ then the velocity
vector u is parallel to the z axis and the coolant ~ow is
described by the following equation]
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m being the dynamic viscosity and p a generalized pres!
sure\ which includes the gravitation potential[ Equation
"0# must be integrated by imposing as boundary con!
ditions that velocity is null on the contact surface between
the ~uid and the solid\ derivative of velocity in radial
direction is null in the tube center and]
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Fig[ 0[ Finned tube geometry] cross section "a#\ subdivision of a
portion of the cross section in _nite elements "b#[

where v0"r# and v1"r# are functions which provide the
value of the angular coordinate in V0 and V1\ respectively\
and N is the coordinate which is normal to the two lines[

Where the thermal pro_le is fully developed\ the tem!
perature distribution in the coolant is described by the
following equation]
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r being the density\ cp the speci_c heat and kc the thermal
conductivity of the coolant[ The temperature distribution
in the _nned tube is instead described by Laplace|s equa!
tion]
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Equations "3# and "4# must be integrated by imposing as
boundary conditions that temperature and heat ~ux in
normal direction in ~uid and solid are identical on the
contact surface between ~uid and solid\ heat ~ux per unit
of surface in radial direction is equal to −qý on the
external surface and is null in the tube center and]

Tc ðr\v0"r#Ł � Tc ðr\v1"r#Ł [r ¾ R−a "5#

Tf ðr\v0"r#Ł � Tf ðr\v1"r#Ł [R−a ¾ r ¾ R¦s "6#

$
1Tc

1N%ðr\v0"r#Ł

� $
1Tc

1N%ðr\v1"r#Ł

[r ¾ R−a "7#

$
1Tf

1N%ðr\v0"r#Ł

� $
1Tf

1N%ðr\v1"r# Ł

[R−a ¾ r ¾ R¦s "8#

Moreover\ the value of the temperature in one point of
the section is needed[

It is convenient to determine the velocity and tem!
perature distributions numerically\ using a _nite element
method ð03Ł[ The portion of the cross section of the _nned
tube can be subdivided in an array of elements "Fig[ 0b#
delimited by two concentric arches and two segments[ In
the center of the tube an element with the form of a circle
sector can be located\ supposing that in this element
changes in the coolant velocity and temperature are neg!
ligible[ Moreover\ each element can be divided into four
subelements by joining the middle points of the opposite
sides[

In the _rst instance\ let us suppose that conditions "1#\
"5# and "6# are not necessarily veri_ed and momentum
and heat ~uxes through V0 and V1 are null[ Moreover\
let the velocity and temperature in each element be
approximated by an interpolation of the values ui and ti\
which they assume in the four knots of the element]

u"r\u# � s
i

Fiui T"r\u# � s
i

Fiti "09#

Fi �
ln r−ln rj"i#

ln ri−ln rj"i#

u−uk"i#

ui−uk"i#

"00#

ri\ rj\ ui\ uk being knot coordinates[
From a balance between viscous and pressure forces

which act on the subelements which are around each
knot\ the following system can then be written ð03Ł]

GM(U �
0
m

dp
dz

A "01#

where GM is a momentum transportation matrix and U
and A vectors containing the velocity of each knot and
the total transversal surface of all the subelements around
each knot\ respectively[ Moreover\ from a balance
between the conductive heat ~ux which enters the sub!
elements around each knot and the convective heat ~ux
in the longitudinal direction through the subelements
around each knot\ the following system can be written
ð03Ł]

GH(T � D "02#
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D �
qý
kc0

"R¦s#1b

wt

GA(U−L1 "03#

where GH and GA are heat transportation and surface
integration matrices\ respectively\ L a vector containing
the total perimeter crossed by qý of the subelements
around each knot\ and wt the total volume ~ow rate
through the portion of the _nned tube section[ In vectors
U\ A\ T\ and L only one element has been assigned to the
circular sector located at the tube center[

At this stage conditions "1# and "2# can be imposed
by modifying vector U\ matrix GM and vector A in the
following way]

U
 � 0
U0

U21 "04#

G
M � 0
GM00¦GM01¦GM10 GM02¦GM12

GM20¦GM21 GM22 1 "05#

A
 � 0
A0¦A1

A2 1 "06#

where index 0 and 1 refer to the knots on the lines V0 and
V1\ respectively\ with the exception of that of the element
at the tube center\ and index 2 refers to all the other knots
in ~uid[ By distinguishing knots on the contact surface
between ~uid and solid\ in which velocity is known\ from
the others the following system is then obtained]

G
Muu(U
u �
0
m

dp
dz

A
u "07#

where index u refers to the knots in which the velocity is
unknown[ The contribution of the known velocities has
been omitted since these velocities are null[ By solving
system "07# the velocity distribution in the portion of the
conduit section is determined[

Conditions "5#Ð"8# can now be imposed by modifying
vector T\ Matrix GH and vector D in the following way]

T
 � 0
T0

T21 "08#

G
H � 0
GH00¦GH01¦GH10 GH02¦GH12

GH20¦GH21 GH22 1 "19#

D
 � 0
D0¦D1

D2 1 "10#

where index 0\ 1 and 2 refer to the same knots as in
equations "03#Ð"05#[ By assigning an arbitrary temperature
to a knot and distinguishing it from the others\ whose
temperature is unknown\ the following system is then
obtained]

G
Huu(T
u � D
u−G
Hun(T
n "11#

where index n refers to the knot in which the temperature
is known[ By solving system "11# the temperature dis!
tribution in the portion of the cross section is determined

as a function of T
n[ Since the system is linear the value
of this temperature does not in~uence the heat transfer
characteristics[

Finally\ the bulk temperature\ the global heat transfer
coe.cient\ the equivalent Nusselt number and the com!
pared e}ectiveness can be calculated as in ref[ ð03Ł]

Tb �
0
wt

s
i

s
k

`Aikuktk "12#

h �
qý

Tmax−Tb

"13#

Nue �
h1"R¦s#

kc

"14#

Ec �
h1R:M
3[253 kc

"15#

where the summation index i is extended to all the knots
of the coolant\ `Aik are the elements of matrix GA\ Tmax is
the maximum temperature\ which obviously occurs on
the external tube surface\ and M is a scale factor which
indicates how many times a _nned tube with real inner
radius R should be enlarged in order present the same
hydraulic resistance of a ~at wall tube with inner radius
equal to R]

M �
3X

"−dp:dz#
pwt:b >

7m

pR3
"16#

The compared e}ectiveness thus results in the ratio
between the heat ~ux dissipated by a _nned tube and that
removed\ under the same conditions\but a ~at wall tube
with the same hydraulic resistance[

2[ Geometry optimization

The geometry of the _nned tube is described by par!
ameters R\ s\ a\ b and the pro_le functions f0"r# and f1"r#[
Referring s\ a and the radial coordinate to the inner
radius it is possible to introduce the following variable\
which do not depend on the tube size]

s �
s
R

\ a �
a
R

\ h �
r
R

f0"h# � f0"hR#\ f1"h# � f1"hR# "17#

As in ref[ ð03Ł\ a polynomial form can be assigned to the
pro_le functions f0 and f1]

f0"h# � s

n0

i � 9

c0ih
i "18#

f1"h# � s

n1

i � 9

c1ih
i "29#

Such functions are univocally determined by the values
which they assume in n0¦0 and n1¦0 points\ which can
be chosen equally spaced between the base and the tip of
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the _n[ Therefore\ let us assume these values as _n pro_le
describing parameters]

f0i � f000−
i

n0

a1 [i � 9\ 0\ [ [ [ \ n0 "20#

f0i � f000−
i

n1

a1 [i � 9\ 0\ [ [ [ \ n1 "21#

Since the behavior of the _nned tube does not depend on
the rotation of the coordinate system\ this last can be
chosen in order to let\ for example\ f09 be equal to f19[ In
this way\ the number of describing parameters is reduced[
Moreover\ two _nned tubes whose cross sections are
specular present the same thermal performances[ To
avoid redundance\ the angular coordinate direction could
be chosen such that\ for example\ the derivative of f0"h#
always results positive at the beginning of the _n[

Assuming u equal to f0"h# on a lateral _n pro_le and
to −f1"h# on the other\ the normalized area of the _n
cross section j and the average normalized thickness of
the _nned tube wall s¹ are then]

j � s

n0

i � 9

c0i"f09\[ [ [\f0n#
0−"0−a#i¦1

i¦1

¦ s

n1

i � 9

c1i"f19\[ [ [\f1n#
0−"0−a#i¦1

i¦1
"22#

s¹ �X"0¦s#1¦
j

b
−0 "23#

Parameter s¹ is representative of the solid volume of the
_nned tube[

The geometry optimization problem now consists in
_nding the combination of parameters a\ b\ s\ f0i\ and
f1i which allow the maximum Nue or Ec to be obtained
respecting some constraining conditions[ To solve such a
problem a genetic algorithm ð02\ 04\ 05Ł similar to that
of ref[ ð03Ł can be utilized[ The following variation must
be introduced[

If after reproduction\ the _n is too thin or too thick\
parameters f0i or f1i must be resized[ Let f2"h# be the
sum of f0"h# and f1"h#\ f2min and f2max the minimum and
the maximum values which f2"h# assumed for h between
0−a and 0[ In order to let f2"h# be no less and no greater
than limit values umin and umax\ respectively\ f0i can be
changed in the following way]

f2i �

F

G

G

j

J

G

G

f

f2max−
f2max−umin

f2max−f2min

ðf2max−f2"0−ai:n0#Ł

if f2min ³ umin

f2min¦
umax−f2min

f2max−f2min

ðf2"0−ai:n0#−f2minŁ

if f2max × umax

[ i � 9\ 0\ [ [ [ \ n0 "24#

f¼ 0i � f0i¦f2i−f2"0−a i:n0# "25#

f¼ being the new parameter values[
To make the genetic algorithm faster and to avoid

its stopping in correspondence with local maxima\ it is
expedient to maintain n0¦n1¦1 _n pro_le describing
parameters and the redundance of specular geometries[

3[ Results

Some optimizations of the _nned tube geometry have
been carried out in order to maximize the equivalent
Nusselt number or the compared e}ectiveness under
di}erent conditions[ In the genetic algorithm populations
of 19 samples and a selection percentage equal to 19 were
established and uniformly distributed between −09)
and ¦09)[ Random errors were introduced during par!
ameter reproduction[ The genetic algorithm was stopped
after 49 generations from the time in which an improve!
ment was no longer observed[

Some constraints have been imposed to ensure the
structural integrity of the _ns and a uniform distribution
of the coolant in the tube[ In particular\ the minimum
angle between the lateral pro_les of the same _n umin has
been imposed to be no less than 9[0b and the maximum
umax has been imposed to be no greater than 0[8b[ More!
over\ the _n height a has been constrained to an estab!
lished value\ which in the following optimization exam!
ples is equal to 9[7[ Such a constraint has been imposed
since\ as observed in ref[ ð03Ł\ the optimization algorithm
tried to extend the normalized height of the _n a as much
as possible in order to create separated narrow channels[
Lastly\ the absolute value of the maximum di}erence
between the values which the angular coordinate assumes
on contour V0 or V1 has been imposed to be no greater
than 1 b\ in order to avoid excessive rotations of the _ns\
which would create problems in tube production[

Finned tube geometries which maximize Nue are
shown in Fig[ 1 for n0 equal to n1 and ranging from 0 to
3\ b equal to p:3 and g equal to 499[ A high value has
been assigned to b in order to better appreciate changes
in the lateral _n pro_les[ The value chosen for g cor!
responds to the case of a _nned tube made of copper and
cooled by water[ The characteristic parameters of the
optimum geometries of Fig[ 1 are reported in Table 0
together with those of the optimum geometries which will
be discussed below[ Geometries obtained with the genetic
algorithm have been rotated in order to obtain f09 equal
to f19[

In the four optimum geometries\ channels between the
_n have comparable height\ while their width increases
with the polynomial order[ In the _rst three cases the
contours V0 and V1 present the maximum rotation which
is allowed\ while in the fourth case a su.cient channel
width is obtained with a smaller rotation[
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Fig[ 1[ Finned tube geometries which maximize Nue when a is equal to 9[7\ b to p:3 and g to 499[

The equivalent Nusselt numbers of the optimum
geometry of Fig[ 1 are considerably higher than the
maximum equivalent Nusselt number which can be
obtained under the same conditions with ~at _ns\ whose
lateral pro_le angles are constant[ In particular\ the
equivalent Nusselt number of the tube with the optimum
fourth polynomial order lateral _n pro_les is more than
1[1 times that of the tube with the optimum constant
pro_le angle\ which is equal to 18[20 ð03Ł[ Moreover\
the asymmetrical polynomial pro_le _ns perform much
better than the symmetrical ones of the same polynomial
order[ A comparison between the equivalent Nusselt
number of asymmetrical and symmetrical polynomial
pro_le _ns is illustrated in Fig[ 2a[

The solid volume required by the optimum geometries
of Fig[ 1 does not change greatly[ In the _rst three cases\
in which the channel shape is more similar\ the average
_nned tube thickness decreases with the polynomial
order[

In Fig[ 3\ for s¹ equal to 9[2\ 9[1 and 9[0\ the geometries
which maximize Nue with asymmetrical polynomial _ns
of second and fourth order are compared to those with
_ns with zero order pro_les\ which are symmetrical[ By
constraining the average wall thickness to 9[2 and 9[1
the relative improvements of the higher order lateral _n

pro_les increase[ Moreover\ on the contrary of sym!
metrical _ns ð03Ł\ asymmetrical _ns with higher order
pro_les still perform sensibly better than zero order pro!
_le _ns even when s¹ is reduced to 9[0[ A comparison
between the equivalent Nusselt numbers of asymmetrical
and symmetrical _n optimum geometries is illustrated in
Fig[ 2b for di}erent values of the average _nned tube
thickness[

The equivalent Nusselt numbers of optimum
geometries obtained by assigning di}erent polynomial
orders to the two lateral _n pro_les are reported in Fig[
4[ By varying the order of one pro_le the highest changes
in Nue are observed when the order of the other pro_le
is equal to 1[

In Figs 5 and 6 velocity and temperature distributions
on the cross section of the optimized tube with asym!
metrical _ns are reported for polynomial order ranging
from 0 to 3 and s¹ equal to 9[2[ In the _rst case the velocity
is more uniformly distributed than in the second case
"n0 � n1 � 1#\ so that higher velocity and temperature
gradients are induced between the _ns\ but the heat trans!
fer surface is less extended[ In the third case\ velocity is
less uniformly distributed between the tube center and
the channels than in the second case and the heat transfer
surface is less extended^ but this last is better exploited
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Table 0
Characteristic parameters of some optimum _nned tube geometries

b g n0 n1 s¹ s f09 f00 f01 f02 f03 f10 f11 f12 f13 Nue Ec M

p:3 499 0 0 9[235 9[092 9[4082 1[995 * * * −0[022 * * * 35[60 2[17 1[85
p:3 499 1 1 9[233 9[003 9[2283 0[534 1[026 * * −9[5287 −9[8748 * * 49[28 2[30 2[93
p:3 499 2 2 9[293 9[948 9[5186 9[8326 0[632 1[92 * −9[972 −9[76 −9[8622 * 44[32 2[86 2[91
p:3 499 3 3 9[244 9[045 9[4834 9[7993 0[501 9[7254 9[432 −0[0960 −9[3012 −9[1376 9[6077 54[2 3[20 2
p:3 499 0 0 9[2 9[94 9[4084 0[877 * * * −0[041 * * * 34[67 2[32 1[80
p:3 499 1 1 9[2 9[963 9[2907 0[635 1[098 * * −9[6674 −9[8591 * * 37[5 2[38 1[86
p:3 499 2 2 9[2 9[942 9[4604 9[8228 0[696 1[095 * −9[9237 −9[7307 −9[8690 * 44[14 2[85 2[93
p:3 499 3 3 9[2 9[090 9[4171 9[6760 0[478 9[6375 9[2796 −9[9748 −9[3047 −9[1030 9[6895 52[75 3[40 1[84
p:3 499 1 1 9[1 9[940 9[011 0[373 0[831 * * −9[7152 −0[08 * * 22[18 2[1 1[16
p:3 499 3 3 9[1 9[94 9[2664 9[5151 0[593 9[5584 9[1996 −9[1190 −9[4190 −9[157 9[4858 36[65 3[91 1[48
p:3 499 1 1 9[0 9[942 9[9721 9[3890 0[51 * * −9[2072 −0[405 * * 12[61 2[90 0[61
p:3 499 3 3 9[0 9[94 9[9783 9[2968 0[993 0[532 9[6561 −9[052 −9[6465 −0[323 −9[5714 20[08 2[42 0[82
p:3 499 1 0 9[2 9[942 9[3248 0[238 0[88 * * −0[04 * * * 35[10 2[3 1[84
p:3 499 2 0 9[2 9[962 9[1703 9[0217 −9[6751 −9[8772 * 1[017 * * * 41[14 2[71 1[81
p:3 499 2 1 9[2 9[976 9[4536 0[988 1[910 0[601 * −9[6732 −9[8992 * * 42[75 3[93 1[70
p:3 499 3 0 9[2 9[976 9[3815 9[5076 0[391 0[490 1[902 −0[972 * * * 43[04 3[97 1[7
p:3 499 3 1 9[2 9[966 9[5256 9[6546 0[565 0[763 1[122 −9[5381 −9[7814 * * 59[71 3[24 1[86
p:3 499 3 2 9[2 9[972 9[5411 9[67526 0[67 0[876 1[145 −9[34 −9[8063 −9[7704 * 50[54 3[27 1[87
p:3 49 1 1 9[2 9[940 9[4130 0[221 0[838 * * −9[3446 −9[35043 * * 13[28 0[77 1[72
p:3 49 3 3 9[2 9[941 9[5861 9[5223 0[078 9[4680 9[155 9[1061 9[90973 9[056 9[8548 22[51 1[30 2[93
p:7 499 1 1 9[2 9[017 9[0511 9[7904 9[8285 * * −9[3412 −9[4806 * * 69[15 4[90 1[74
p:7 49 3 3 9[2 9[038 9[1398 9[2702 9[6247 9[135 9[1894 −9[9765 −9[1850 −9[0328 9[3034 76[43 5[94 1[78
p:05 499 1 1 9[2 9[100 9[9725 9[1723 9[3410 * * −9[1143 −9[2295 * * 099[3 5[68 1[7
p:05 499 3 3 9[2 9[104 9[9518 9[0128 9[1405 9[9820 9[0058 −9[9134 −9[0541 −9[9622 9[1993 009[8 6[20 1[75
p:3 499 1 1 9[067 9[943 9[0006 9[8135 0[507 * * −9[2336 −0[411 * * 18[02 2[05 1[
p:3 499 3 3 9[054 9[941 9[0165 9[3923 0[913 9[3988 9[3091 −9[9120 −9[2195 9[9006 −9[2935 20[07 2[14 1[98

Cases are listed in the same order they are discussed in the text[
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Fig[ 2[ Comparison between Nusselt numbers of tubes with optimum asymmetrical "continuous line# and symmetrical "dashed line#
_ns when s¹ is unconstrained "a# and when it is constrained "b# to 9[0 "¦#\ 9[1 "×# and 9[2 "�#[

since higher thermal gradients are induced near the tube
wall and at the beginning of the _ns[ Lastly\ in the fourth
case\ velocity is badly distributed compared to the pre!
vious ones and lower temperature gradients are obtained^
but the wider extension of the heat transfer surface
between solid and ~uid provide better performances[

In Fig[ 7a the equivalent Nusselt numbers of optimum
geometries with asymmetrical and symmetrical _ns are
compared together in correspondence with two values of
g] 49 and 499[ When g is a magnitude order lower than
in the previous cases the higher order pro_le _ns still
perform signi_cantly better than the zero order ones\
even if the improvements in the heat transfer are smaller[
Moreover\ the asymmetrical _ns still present higher
equivalent Nusselt numbers[

In Fig[ 7b the equivalent Nusselt numbers of optimum
geometries with asymmetrical and symmetrical _ns are
compared together in correspondence with three values
of b] p:3\ p:7 and p:05[ It is evident that when b is equal
to p:7 the fourth order asymmetrical _n still performs
noticeably better than the symmetrical ones[ When b is
equal to p:05[ since the channels between the _ns become
narrower\ the contribution of the heat transferred
through the _n tip "where velocity and temperature gradi!
ents are much higher# become more signi_cant[ As a

result\ the heat transfer performances of symmetrical and
asymmetrical _ns are less di}erent than in previous cases[
If the _n height were greater and the channel at the tube
center narrower\ the improvement due to the lateral _n
pro_les would be more noticeable[

Figure 8 shows the _nned tube geometries which max!
imize the dissipated heat ~ux per unit of length with the
same hydraulic resistance and solid volume of a reference
un_nned tube whose wall thickness is 9[5 times its radius[
The same optimum geometries also maximize the heat
~ux dissipated per unit of surface "i[e[ Ec# under the same
conditions[ Such geometries have been obtained with the
genetic algorithm in the following way[ Velocity distri!
bution\ hydraulic resistance and scale factor M have been
determined for each describing parameter combination
of the current population[ The average wall thickness
has then been calculated taking the solid volume of the
reference tube and factor M into account[ Afterward\
the un_nned wall thickness has been resized in order to
respect the constraint on the average tube thickness and
temperature distribution has been determined[ Lastly\
equivalent Nusselt number or compared e}ectiveness
have been calculated and describing parameter com!
binations have been selected on the basis of these par!
ameters[
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Fig[ 3[ Finned tube geometries which maximize Nue when a is equal to 9[7\ b to p:3\ g to 499 and s¹ is constrained to di}erent values[

The fourth polynomial order geometry which has been
found in this way does not perform much better than the
second polynomial order geometry[ Anyway\ it is evident
that asymmetrical _ns provide larger improvements in
the heat transferred per unit of length or surface than
symmetrical _ns do ð03Ł[

4[ Conclusions

The proposed mathematical model allows the heat dis!
sipation to be studied in cylindrical tubes with internal
asymmetrical _ns under laminar coolant ~ow conditions\
taking the relationship between the _n shape and the
local heat transfer coe.cient into account[ By utilizing
the model in a genetic algorithm\ the geometries which
maximize the heat dissipated per unit of _nned tube
length or surface have been found for di}erent situations[
In maximizing the dissipated heat\ the consequences of

constraining the solid volume or the hydraulic resistance
of tubes with asymmetrical internal _ns have also been
investigated[

The results obtained demonstrate that\ in the studied
cases\ asymmetrical _ns perform much better than sym!
metrical ones\ particularly with respect to _ns whose lat!
eral pro_le is described by a constant value of the angular
coordinate[ For example\ in the case of a four internal
_n tube made of copper and cooled by water with an
average wall thickness equal to 9[2 times the internal
radius\ the heat ~ux per unit of tube length dissipated by
the optimum asymmetrical _ns with fourth order poly!
nomial lateral pro_les is nearly 0[22 times that removed
by the optimum symmetrical _ns with polynomial lateral
pro_les of the same order and 1[57 times that dissipated
by zero polynomial order optimum _ns[

Contrary to symmetrical _ns\ the asymmetrical ones
with higher polynomial order pro_les perform better than
zero polynomial order _ns even when the available
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Fig[ 4[ Comparison between Nusselt numbers of tubes with
optimum _ns whose polynomial pro_les have di}erent order[

material is very scarce[ The improvements in the heat
transfer e}ectiveness of higher order asymmetrical _ns
decrease when the ratio between thermal conductivity of
the solid and of the ~uid is reduced and when the number
of _ns increases\ in the same manner as for symmetrical
_ns ð03Ł[

In terms of heat ~ux dissipated per unit of tube length
or surface for given available material and hydraulic
resistance\ the performances of second and fourth order
_ns are not very di}erent[ Second order asymmetrical
_ns dissipate heat ~uxes which already are nearly 0[4
times those removed by zero order _ns under the same
conditions[

While the improvements in the heat transfer e}ec!
tiveness of higher order symmetrical _ns depend mainly

on the increase of the local heat transfer coe.cient
induced by the more articulated _n shape\ the improve!
ments of higher order asymmetrical _ns are a conse!
quence of the extension of the heat transfer surface and
of its better exploitation[

Tubes with asymmetrical _ns\ as well as with sym!
metrical _ns\ can be produced by extrusion of melted
metal through an appropriate die and subsequent rec!
ti_cation by means of a cursor which expands the tubes
and gives the _nal shape to the _ns[ In order to make the
cursor motion easier\ rounded corners between the _ns
and the tube wall are preferable[ In the studied cases\
fourth order polynomial pro_le _ns\ which provide the
highest equivalent Nusselt numbers\ also create the most
rounded channels[

A more correct solution to the problem of optimizing
the geometry of internally _nned tube under laminar ~ow
conditions could be obtained by taking viscous dis!
sipations into account[ For heat removal through laminar
forced convection in cylindrical smooth wall ducts with
uniform heat ~ux imposed on the external wall surface\
it has been demonstrated ð06\ 07Ł that the Nusselt number
calculated by considering viscous dissipations is lower
than by neglecting them[ In internally _nned tubes\ the
e}ects of viscous dissipations are more sensible\ since
higher velocity gradients occur[ Since the improvements
in the heat transfer of symmetrical _ns are related to
higher velocity and temperature gradients\ it is then
expected that they are more a}ected by viscous dis!
sipations than improvements in the heat transfer of asym!
metrical _ns[

It would also be interesting to study the optimization
problem by considering as a boundary condition a con!
stant temperature on the external wall surface[ For lami!
nar forced convection in internally _nned tubes\ analyses
performed by neglecting viscous dissipation ð08\ 19Ł dem!
onstrate that the Nusselt number is less sensitive to
changes in the tube geometry when the external
temperature is constant[ Therefore\ under such
conditions\ improvements in the heat transfer of poly!
nomial _ns would probably be more limited[ Never!
theless\ for laminar forced convection in cylindrical
smooth wall ducts with constant temperature on the
external wall surface\ it has been demonstrated ð07Ł that
the Nusselt number calculated by considering viscous
dissipations is nearly three times that obtained by neg!
lecting them[ For internally _nned tubes\ where higher
velocity gradients occur\ it is then expected that the heat
transfer is strongly in~uenced by the alteration of viscous
dissipations induced by changes in the tube geometry[
Therefore\by taking viscous dissipation into account\ the
improvements in the heat transfer of polynomial pro_le
_ns are expected to be considerable even for the boundary
condition of constant wall temperature[ Moreover\
optimized asymmetrical _ns are expected to induce higher
velocity gradients and viscous dissipations than the
optimized ones found in the present analysis[
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Fig[ 5[ Velocity distributions in the cross section of optimum tubes when a is equal to 9[7\ b to p:3\ g to 499 and s¹ is constrained to 9[2[
Curves are drawn every 09) of the maximum velocity[

Fig[ 6[ Temperature distributions in the cross section of optimum tubes when a is equal to 9[7\ b to p:3\ g to 499 and s¹ is constrained
to 9[2[ Curves are drawn every 09) of the di}erence between the maximum and minimum temperatures[
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Fig[ 7[ Comparison between the Nusselt numbers of the tubes with optimum asymmetrical "continuous line# and symmetrical "dashed
line# _ns obtained by letting g be equal to 499 "�# and 49 "9# and keeping b equal to p:3 "a# and by letting b be equal to p:3 "�#\ p:7
"×# and p:05 "¦# and keeping g equal to 499 "b# with a equal to 9[7 and s¹ constrained to 9[2[
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Fig[ 8[ Finned tube geometries which maximize the dissipated
heat ~ux per unit of length and surface with the same hydraulic
resistance and solid volume of a reference un_nned tube whose
wall thickness is 9[5 times its radius[
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